DIMENSÕES DA UMBRA DURANTE O ECLIPSE LUNAR TOTAL DE 15-16 DE MAIO DE 2003

ABSTRACT

This work analyzes 214 timings of limb and midcrater contacts performed by 15 Brazilian observers, most of them members of the Brazilian Observational Astronomy Network (REA/Brasil) during the total eclipse of the Moon on May 15-16, 2003. The analysis has determined the parameters that define the dimensions of the umbra as well as of the optically-active component of Earth's atmosphere, such as their radii and flattening. In addition, the time-dependence of those parameters has also been investigated.

RESUMO

Este trabalho analisa 214 cronometragens de contatos da umbra terrestre com crateras e limbo lunares realizadas por 15 observadores brasileiros, a maioria deles membros da Rede de Astronomia Observacional (REA/Brasil), durante o eclipse lunar total de 15-16 de maio de 2003. A análise fornece os parâmetros que definem as dimensões da umbra e da camada opticamente ativa da atmosfera terrestre, tais quais raio e achatamento, sugerindo explicações para o comportamento que exibiram durante o evento.

I - INTRODUÇÃO

Em 1702, Pierre de La Hire descobriu que seus cálculos, os quais se baseavam nas dimensões da parte sólida da Terra, subestimavam em cerca de 2% o raio da sombra terrestre observada sobre a Lua eclipsada. Ele atribuiu a diferença à influência da atmosfera terrestre. Desde então, vários cientistas têm monitorado as dimensões da sombra terrestre para estudar as causas de suas variações de um eclipse para outro. Atualmente, simulações computacionais, as quais investigam as trajetórias dos fótons refratados para o interior do cone de sombra da Terra, não somente explicam, como também reproduzem com boa precisão alguns parâmetros médios que descrevem as dimensões observadas da umbra. Contudo, os cálculos não permitem

Helio de Carvalho Vital - REA/RJ

ainda prever as dimensões exatas da sombra, as quais parecem depender das concentrações de aerossóis estratosféricos e da espessura da camada de ozônio ao longo do limbo terrestre, dentre outros fatores.¹

Uma forma de "medir" a umbra é cronometrar os instantes em que sua borda toca o limbo lunar ou cruza o centro das formações ou crateras mais facilmente identificáveis da superfície da Lua. Contudo, essa tarefa apresenta um certo grau de dificuldade, pois a borda umbral localiza-se dentro de uma região de transição gradual de luz entre o final da penumbra (cinza) e a parte mais interna e escura da sombra (a umbra). Em virtude disso, a borda umbral mostra-se geralmente pouco definida e até mesmo difusa. Para identificá-la, o observador, deve usar aumentos telescópicos entre 40x e 60x e esforçar-se por visualizá-la ao longo do disco lunar, como a linha imaginária onde a iluminação parece variar de forma mais abrupta. Em seguida, deve registrar, com precisão mínima de 0,1 minuto, os instantes em que ela cruza o centro das principais crateras ou tangencia, interna ou externamente o limbo lunar.

Astrônomos brasileiros tiveram uma excelente oportunidade para determinar as dimensões da umbra na noite de 15 para 16 de maio de 2003, quando o disco lunar cruzou a metade norte da sombra terrestre num eclipse lunar total não central. As circunstâncias previstas para esse evento e as sugestões de atividades para sua monitoração sistemática haviam sido previamente divulgadas num projeto² da Rede de Astronomia Observacional Brasileira (REA/Brasil). Além de outras atividades sugeridas para investigação do brilho do eclipse e descritas detalhadamente num outro artigo³ desta publicação, constavam a cronometragem de limbo e crateras.

II - OBSERVAÇÕES

Munidos de telescópios refletores com aberturas entre 11 e 20 cm (em maioria) e usando aumentos entre 40 e 60 vezes, 15 observadores, experientes na observação desse tipo de evento, e organizados em duplas ou individualmente, submeteram⁴ à coordenação da seção de eclipses lunissolares da REA/ Brasil 230 cronometragens. Desse total, 214 (93%) foram selecionadas, por situarem-se dentro de ambos os níveis de tolerância estatística adotados: ± 2 desviospadrões e ± 1 minuto. O autor agradece a todos os participantes pela fundamental contribuição.

A **Tabela 1** fornece o número de cronometragens de contatos de imersões e emersões selecionadas, enquanto a **Tabela 2** lista os tempos médios cronometrados para todos os contatos observados, dentre outros parâmetros.

Tabela 1 - Cronometragens de Limbo e Crateras

Observador	Inic.	Cronometragens	
		Inersie	Emersões
Alexandre Amorim	AA	09	11
Antonio Rosa Campos	ARC	19	21
Carlos Alberto Colesanti*	C&T	02	01
Diego Moicano Gonçalves **	M&P	11	10
Edvaldo José Trevisan	EJT	14	01
Fábio Plocos Carvalho**	M&P	11	10
Frederico Luiz Funari***	F&N	11	-
Helio de Carvalho Vital	HCV	25	26
Marilena Mollaco****	M&F	07	11
Nelson Falsarella****	M&F	07	11
Newton Ferreira Funari***	F&N	11	-
Raquel Yumi Shida	RYS	10	02
Rosely Gregio	RG	01	-
Tasso Augusto Napoleão*	C&T	02	01
Willian Carlos de Souza	WCS	22	-
Total Geral (*duplas)	214	131	83

Na **Tabela 2**, os caracteres superescritos, seguintes aos nomes das formações lunares, informam se o contato é de imersão (**I**) ou emersão (**E**). As colunas 3, 4 e 5 fornecem respectivamente: a dispersão dos tempos cronometrados (1 σ -desvio-padrão); o número de cronometragens (N) e o ângulo umbral, expresso em graus. O ângulo umbral é aquele, subtendido no centro da sombra, entre o ponto do contato e o ponto Leste (ou Oeste), sendo negativo quando o contato ocorre ao Sul.

Aproximadamente 1/3 dos observadores relataram observação negativa do eclipse, em virtude da presença de forte nebulosidade durante todo o evento. Além disso, alguns participantes não registraram as emersões devido a condições climáticas desfavoráveis após a totalidade. Em conseqüência disso, o número de imersões cronometradas foi superior ao de emersões e o número total de cronometragens aproximou-se apenas da metade do recorde obtido pela REA para esse mesmo tipo de campanha. Tabela 2 - Tempos Médios Observados para Contatos

	-	-		2
Contato c/ Formação	10 (h:m:s)	Erro (σ) (+ s)	N	Ang. Umb.
Twebo E	1.17.58.8	10.8	5	1.56
Stevinus AE	5.11.06.0	17,0	1	-1,50
CampanusE	4.38.51.3	31	3	+3.78
U A	5.17.05.2	26.8	1	+4.25
BirtE	4.45.58.0	20,0	4	+4,25
GoglaniugE	5.00.02.0	1.4.1	2	+7.25
LangranusE	5.13.200	14,1	4	+7.37
D;11-E	4.26.42.0	10,0	1	+10.00
Concorinue	4.20.42,0	-	1	+10,00
ToruntingE	5.06.14.0	4.2	2	+11,57
DiopreineE	4.54.00.5	4,4	2	+13,57
Crim at di E	4.54.00,5	2,1	4	+13,09
M Crisium E	4.10.47,0	30,0	4	+14,20
Due etereE	5.00:43,7	70	2	+17,40
Proclus-	3:02:47,5	7,8	4	+18,00
Fiimus-	4:03:22,0	42,0	4	+18,70
C opernicus ²	4:32:17,5	42,2	0	+18,91
Kepler-	4:24:23,2	43,3	4	+19,14
IVI anilius ²⁵	4:46:00,0	20,8	2	+19,27
Wienelaus ⁴	4:49:06,3	12,4	2	+19,58
Pytheas ⁴	4:29:10,5	7,8	4	+23,39
1 im ocharis ^E	4:30:39,0	42,2	2	+26,02
Aristarchus	4:16:11,0	17,6	4	+26,86
Eudoxus ^E	4:36:14,0	21,4	2	+32,26
Pico ^E	4:23:48,3	2,1	2	+34,13
Aristoteles ^E	4:33:34,6	23,7	5	+34,67
Plator	4:23:23,0	20,7	5	+36,59
T ycho ¹	2:18:40,4	40,3	8	+37,64
U3	4:06:22,5	26,8	6	+38,79
Campanus ¹	2:14:49,0	1,4	2	+43,06
U1	2:03:06,6	43,5	7	+43,41
Birt ¹	2:23:17,0	-	1	+44,33
Goclenius	2:48:48,0	3,5	2	+46,66
Langrenus	2:54:07,4	13,8	5	+46,78
Billy	2:10:15,0	49,9	4	+49,39
C ensorinus ^I	2:18:14,0	25,5	2	+51,16
T aruntius ¹	2:54:48,0	14,0	3	+52,99
Dionysius ¹	2:43:00,7	10,1	3	+53,23
Grim aldi ¹	2:08:47,8	40,5	5	+53,46
Riccioli ¹	2:09:00,0	-	1	+54,60
M. Crisium ¹	3:01:54,6	18,0	7	+56,81
Proclus ^I	2:58:49,3	18,4	6	+57,70
Copernicus ^I	2:29:04,0	28,7	9	+57,88
Plinius ^I	2:50:16,8	6,7	4	+58,30
Kepler ^I	2:22:12,3	24,5	4	+58,32
M anilius ^I	2:43:46,8	19,8	5	+58,57
M enel aus ^I	2:47:23,0	24,3	4	+59,01
P ythe as ^I	2:34:54,3	25,5	6	+63,00
Tim ocharis ^I	2:40:54,3	43,8	4	+65,29
Aristarchus ^I	2:28:05,3	13,9	8	+65,64
Eudoxus ^I	2:59:44,3	16,5	6	+71,61
PicoI	2:53:22,0	10,6	3	+73,58
Aristoteles ^I	3:02:31,5	15,7	6	+74,12
Laplace ^I	2:49:02,5	3,5	2	+74,49
PlatoI	2:56:25,9	18,1	7	+75,82
U 2	3:14:26,1	46,3	7	+78,44

III-CÁLCULOS

Todos os cálculos apresentados neste trabalho foram realizados usando um conjunto de programas desenvolvidos pelo autor para previsão e análise de contatos durante eclipses lunares. Os programas têm sido extensivamente testados e aperfeiçoados desde as campanhas de observação dos 2 eclipses lunares de 1992 e, desde então, têm permitido à seção de eclipses realizar previsões⁵ para elaboração de projetos de observação e analisar⁶ as mais de 1500 cronometragens de contatos obtidas pela REA.

As correlações para cálculo das posições e diâmetros geocêntricos do Sol (e, conseqüentemente, da sombra terrestre, diametralmente oposta a ele) e da Lua, além da paralaxe lunar, correspondem às sugeridas por Meeus⁷ e foram aperfeiçoadas para que reproduzam as efemérides oficiais⁸⁻⁹ com erros inferiores a 0,1". O cálculo das posições aparentes geocêntricas de formações lunares inclui fórmulas criadas por Link¹⁰ e Meeus¹¹, enquanto o raio teórico da umbra baseia-se em modelos descritos por Soulsby¹².

Após o cômputo dos parâmetros citados anteriormente, os programas simulam o desenvolvimento do eclipse, predizendo os tempos dos contatos para 6 diferentes modelos de umbra, e para quaisquer valores de ampliação e achatamento da umbra, ou da paralaxe lunar escolhidos pelo usuário. Nas análises de cronometragens, o programa fornece o fator de ampliação da umbra ou da paralaxe lunar e o achatamento umbral, de acordo com os diferentes modelos de simulação do raio umbral.

Cálculo do Raio Umbral.

Considerações geométricas simples permitem deduzir que o raio teórico da umbra terrestre durante eclipses lunares pode ser aproximado por:

$$\mathbf{R}_{c} = \boldsymbol{\alpha}_{U} \left(\boldsymbol{\pi}_{L} + \boldsymbol{\pi}_{S} - \mathbf{R}_{S} \right) \qquad \text{Eq.1}$$

Onde:

 $\mathbf{p}_{\mathbf{L}}$ = Paralaxe horizontal equatorial da Lua;

 \mathbf{p}_{s} = Paralaxe horizontal equatorial do Sol;

Rs = Semi-diâmetro geocêntrico do Sol;

 \mathbf{a}_{U} = Fator que difere de 1 devido à influência da atmosfera da Terra (°1,02)

No entanto, considerando-se que a forma geóide da Terra precisa ser levada em consideração no valor do cálculo da paralaxe lunar, e que o contato com cada cratera ocorre sob uma configuração geométrica específica, modelos com diferentes graus de sofisticação para a representação dos parâmetros $\boldsymbol{\alpha}_{L}$ e $\boldsymbol{\alpha}_{S}$ podem ser usados para o cálculo de **Rc**, tal que:

$$\mathbf{R}_{c} = \mathbf{a}_{U} \left(\mathbf{a}_{L} \mathbf{p}_{L} + \mathbf{p}_{S} - \mathbf{a}_{S} \mathbf{R}_{S} \right)$$
 Eq.2

Uma representação simples e freqüentemente usada para previsão dos tempos aproximados de contatos considera os seguintes valores: $\alpha_{\rm U}$ = 1,020, $\alpha_{\rm L}$ = 0,99833 (para converter a paralaxe equatorial em média) e $\alpha_{\rm s}$ = 1. As diferenças entre as previsões dos diferentes modelos são geralmente pequenas (da ordem de alguns segundos de tempo) e passam despercebidas em virtude do arredondamento para o minuto mais próximo. Além disso, são freqüentemente de difícil determinação na prática, em virtude do elevado erro estatístico, de alguns décimos de minuto, normalmente associado com as cronometragens.

Ressalta-se que, quando não haja qualquer menção em contrário, deve ser considerado o uso do achatamento igual ao do geóide (1/298,2) e do modelo de Meeus (cujas previsões coincidem com as de Soulsby, sendo ambos de maior complexidade).

IV - ANÁLISES

Fatores de Ampliação e Achatamento de Conjuntos de Cronometragens Individuais. Os conjuntos de cronometragens foram analisados separadamente para determinação dos fatores de ampliação e achatamento da umbra associados às observações de observadores individuais ou em dupla.

A **Tabela 3** resume esses resultados, obtidos segundo o modelo de Meeus para o raio teórico da umbra, considerando-se um valor de achatamento igual ao do geóide (1/298,2). Os fatores de ampliação da umbra relativos às imersões e emersões e suas respectivas médias, ponderadas no número de cronometragens, encontram-se listados na terceira e quinta colunas, respectivamente. Eles são definidos como a percentagem (FAU) que deve ser somada ao raio calculado da umbra (\mathbf{R}_c) para reproduzir o raio observado (\mathbf{R}_o), tal que:

FAU (%) = $(R_{c} - R_{o})/R_{c} \times 100$ ou $(\alpha_{u} - 1) \times 100$ Eq.3

onde, $\alpha_{\rm U}$ é definido na Eq.1, ${\rm FAU}_{\rm I}$ refere-se aos fatores de ampliação umbral das imersões e ${\rm FAU}_{\rm E}$ aos das emersões.

A **Tabela 3** também lista os valores de achatamento da umbra deduzidos a partir de cada

conjunto de cronometragens. A definição de achatamento (γ) usada é dada pela Eq. __:

$$\gamma = (\mathbf{R}_{\rm E} - \mathbf{R}_{\rm P}) / \mathbf{R}_{\rm E}$$
 Eq.4

Tabela 3 - Fatores de Ampliação e Achatamento UmbralObtidos de Conjuntos de Cronometragens

Iniciais	FAU (%)	1/Achat _r	FAUr (%)	1/Achat _E
AA	1,82±0,14	=162<34	1,42±0,11	=0<92
ARC	1,90±0,13	=240<45	2,00±0,06	=83<41
C&T	2,58±0,57	-	2,15±0,57	-
M&P	1,88±0,18	=0<94	1,37±0,11	=410<52
EJT	1,85±0,08	=138<41	2,15±0,31	-
F&N	1,84±0,12	=64<33	-	-
HCV	1,71±0,05	=118<67	1,96±0,06	=56<36
M&F	2,21±0,29	-	1,27±0,23	=210<29
RYS	2,19±0,11	>189=53	1,94±0,23	-
RG	0,64±0,90	-	-	-
WCS	1,86±0,12	=183<47	-	-
Média	1,88±0,05	1/121	1,74±0,12	1/135

Verifica-se que o reduzido número de cronometragens associadas a cada conjunto não permite que sejam determinados valores estatisticamente confiáveis para o achatamento na maioria dos casos. Conseqüentemente, observa-se uma grande dispersão nos resultados. Na Tabela 3, além do valor mais provável ("="), são também fornecidos os limites inferiores ou superiores ("<" ou ">") para o recíproco do achatamento $(1/\gamma)$, correspondentes aos limites de $\pm 2 \sigma$ (= 95%). Observa-se a predominância de valores médios para o recíproco do achatamento na faixa de 1/180 a 1/80.

As incertezas associadas às médias: \pm 0,05% e \pm 0,12%, para as imersões e emersões, respectivamente, estão diretamente relacionadas com a dificuldade que os diferentes observadores encontraram para identificar borda da umbra. Aparentemente, a cronometragem das emersões exigiu um maior esforço por parte dos observadores. Esse fato poderia estar relacionado com uma menor definição da borda umbral ou com uma maior dificuldade dos observadores na identificação dos contatos durante as emersões.

Fatores de Ampliação Segundo Diferentes Modelos. As análises seguintes baseiam-se nos tempos médios dos contatos, fornecidos na Tabela 2. A Tabela 4 lista os fatores de ampliação umbral calculados usando-se 4 diferentes representações para o raio da umbra. A mais simples dela, já mencionada anteriormente e designada AA, é freqüentemente usada, inclusive no Astronomical Almanac para previsão dos tempos aproximados de contatos. A segunda, denominada **Vital** neste trabalho, refere-se ao modelo do autor, de complexidade intermediária no cálculo da paralaxe lunar. Finalmente, **Meeus** e **Soulsby** referem-se aos sofisticados modelos propostos por esses dois pesquisadores. Todos os cálculos da Tab. 4 baseiam-se no achatamento do geóide (1/298,2).

O valor médio do fator de ampliação umbral encontrado (1,82±0,02) coincide, dentro do erro a ele associado, com aquele obtido pelo autor em suas análises de outros eclipses. Além disso, uma ótima concordância entre os resultados dos diferentes modelos é observada, excetuando-se o mais simples deles (**AA**).

Tabela 4 - Fatores de Ampliação Umbral Médios Determinados Usando-se Diferentes Modelos para a Umbra.

Modelo	FAUI	FAUE	FAU
AA	1,855±0,031	1,941±0,044	1,888±0,026
Vital	1,887±0,021	1,716±0,032	1,821±0,018
Meeus	1,878±0,022	1,734±0,033	1,822±0,018
Soulsby	1,878±0,022	1,734±0,033	1,822±0,018

Fatores de Ampliação da Umbra e da Paralaxe para Diferentes Valores de Achatamento Umbral. A Tabela 5 lista os fatores de ampliação da umbra terrestre e da paralaxe lunar calculados segundo o modelo de *Meeus* (imersões, emersões e totais) e usando-se 3 diferentes valores de achatamento da umbra.

Tabela 5 - Fatores de Ampliação da Umbra e da Paralaxe para Diferentes Valores de Achatamento Umbral Calculados pelo Modelo de Meeus.

Simulação	FAU _i	FAU _e	FAU
Umb/298,2	1,878±0,022	1,734±0,033	1,822±0,018
Umb/221,5	1,981±0,021	1,756±0,032	1,893±0,018
Umb/147,0	2,183±0,021	1,797±0,032	2,033±0,018
Pat/298,2	1,398±0,016	1,292±0,024	1,357±0,014
Pat/221,5	1,474±0,016	1,308±0,024	1,410±0,013
Pat/147,0	1,624±0,016	1,339±0,024	1,513±0,013

Observa-se da tabela que os fatores de ampliação crescem com o aumento do achatamento. Isso se explica pelo fato de que o raio médio calculado diminui quando se utiliza um valor maior para o achatamento da umbra, sendo essa variação dependente do ângulo umbral do contato. Enquanto aqueles relativos a contatos que ocorrem próximos a 0º não se alteram significativamente, outros, associados a contatos com ângulos próximos a 90º, podem sofrer variações consideráveis. Com a diminuição do raio médio calculado, um fator de correção da umbra mais elevado faz-se necessário, de forma a reproduzir o raio observado. Por sua vez, o raio observado corresponde à distância angular aparente entre o centro da sombra terrestre e o centro da cratera (formação ou limbo) determinado para o instante médio observado para o contato.

Os três valores de achatamento usados 1/298,2, 1/221,5 e 1/147 foram selecionados por corresponderem respectivamente: à forma do geóide, à projeção da forma geóide da sombra terrestre sobre a superfície esférica da Lua que, segundo Meeus, é dada por:

$$\frac{1/[1-R_{\rm s}^{\prime}/({\rm p_L}+{\rm p_s})]x(1/298,2)}{\rm Eq.5} = 1,346/$$

e, finalmente, ao valor médio encontrado neste trabalho para o achatamento da umbra.

A Tabela 5 também fornece o fator de ampliação da paralaxe lunar necessário para reproduzir o valor observado do raio da umbra. O uso da ampliação da paralaxe lunar é na verdade mais justificável do que o uso do fator de ampliação umbral, o qual incide também, de forma indevida, sobre as componentes relativas à paralaxe solar e ao raio do Sol. A atmosfera opticamente ativa da Terra poderia, nesse caso, ser visualizada como uma extensão do raio da Terra. Obviamente, quando o fator de ampliação da paralaxe for usado, o fator de ampliação umbral deve ser igualado a 1,0.

Variação do Raio Umbral Durante o Eclipse. A Tabela 6 lista os valores do raio umbral (expressos em graus) e os fatores de ampliação umbral (para os achatamentos 1/298 e 1/147), deduzidos a partir dos contatos observados durante o eclipse.

O valor médio do raio umbral foi igual a $(0,7925 \pm 0,0024)^{\circ}$ durante as imersões e a $(0,7938 \pm 0,0032)^{\circ}$ nas emersões. A diferença é, contudo, insuficiente para ser considerada significativa, considerando-se os erros associados. Comparando-se a terceira e quarta colunas, observam-se diferenças mais acentuadas entre os fatores de ampliação umbral calculados usando-se diferentes achatamentos para contatos com ângulo umbral mais próximos de 90 graus.

Visto que durante o eclipse ocorrem pequenas variações na distância Terra-Lua que poderiam alterar os resultados, investigou-se também essa possibilidade. No caso do eclipse em estudo, a paralaxe lunar responde por 79,3% do raio da umbra, em comparação com 20,5% do raio solar e apenas 0,2% da paralaxe solar. No decorrer de todo eclipse, a variação da paralaxe lunar foi inferior a 0,05%, e a do raio solar,

Tabela 6 - Raio e Fatores de	e Ampliação Umbral para
Contatos ($\mathbf{g} = 1$)	/298 e 1/147)

Contatos ($g = 1/298 \text{ e } 1/147$)				
Evento	R _n Umb (°)	(0-C)/C % (1/298)	(0-C)/C % (1/147)	
T ycho ^E	0,7931	1,666	1,666	
Stevinus A ^E	0,7962	2,195	2,195	
C am panus ^E	0,7942	1,773	1,774	
Ū4	0,7868	1,322	1,324	
Birt ^E	0,7947	1,757	1,760	
Goclenius ^E	0,7979	2,304	2,311	
L angrenus ^E	0,7927	1,772	1,779	
B illy ^E	0,7959	2,097	2,109	
C ensorinus ^E	0,7981	2,255	2,272	
T aruntius ^E	0,7967	2,179	2,202	
Dionysius ^E	0,7973	2,085	2,109	
Grim al di ^E	0,7910	1,637	1,663	
M. Crisium ^E	0,7927	1,794	1,832	
Proclus ^E	0,7976	2,323	2,363	
Plinius ^E	0,7984	2,280	2,324	
C opernicus ^E	0,7928	1,540	1,584	
K epler ^E	0,7915	1,467	1,512	
M anilius ^E	0,7949	1,800	1,846	
Menelaus ^E	0,7969	2,069	2,117	
Pytheas ^E	0,7953	1,911	1,979	
Tim ocharis ^E	0,7941	1,784	1,865	
Aristarchus	0,7874	1,080	1,166	
Eudoxus ^E	0,7917	1,622	1,742	
Picot	0,7934	1,856	1,989	
Aristoteles	0,7913	1,659	1,795	
Plato ²	0,7903	1,313	1,662	
Tycho	0,7967	2,218	2,376	
	0,7898	1,835	2,002	
Campanus ²	0,7940	1,949	2,140	
UI Dimt	0,7889	1,097	1,897	
Biff ²	0,7931	1,940	2,140	
Gocienius ²	0,7942	2,013	2,230	
Dint-1	0,7094	1,505	1,727	
Concorinual	0,7930	1,700	2,202	
Teruntinal	0,7910	1,000	2,750	
Diopreinel	0,7939	1,707	1.814	
Grimaldi ^I	0,7917	2 1 2 8	2 402	
Riccioli ^I	0,7916	1 968	2,402	
M Crisium ^I	0,7902	1 678	1 974	
Proclus ^I	0,7909	1.667	1,969	
Copernicus ^I	0,7981	2,422	2,726	
Plinius ^I	0.7928	1.763	2.068	
Kepler ^I	0.7933	1.893	2,199	
M anilius ^I	0.7945	1.947	2.255	
M enelaus ^I	0.7944	1.948	2,258	
P vthe as ^I	0.7932	1.856	2,191	
Tim ocharis ^I	0,7942	2,003	2,352	
Aristarchus ^I	0,7939	2,118	2,471	
Eudoxus ^I	0,7907	1,695	2,076	
Pico ^I	0,7915	1,808	2,198	
Aristoteles ^I	0,7895	1,605	1,996	
Laplace ^I	0,7908	1,768	2,161	
Plato ¹	0,7905	1,733	2,131	
U2	0,7876	1,759	2,167	

relativamente insignificante. Para evitar que mesmo essa pequena variação alterasse os valores de ampliação da umbra calculados, o raio umbral usado nos cálculos foi dividido pelo valor instantâneo da paralaxe lunar (\equiv 1,022°), de forma a não ser afetado significativamente (Δ <0,01%) pela variação da distância Terra-Lua.

Variação do Raio Umbral com o

Ângulo Umbral. A Figura 1 ilustra a variação do raio umbral (dividido pela paralaxe lunar) em função do ângulo umbral. Os círculos amarelos e a curva em azul correspondem às emersões enquanto os círculos e a curva em vermelho correspondem às imersões. As curvas traçadas foram ajustadas aos pontos pelo método dos mínimos quadrados. A curva em verde, ajustada a todos os pontos simultaneamente, corresponde à um ajuste parabólico, enquanto as demais resultam de ajustes lineares. O gráfico mostra nitidamente que:

1. A dispersão dos pontos é relativamente grande;

2. As imersões ocorreram em ângulos umbrais maiores que as emersões, sendo o ângulo umbral médio igual a 58º nas imersões e a apenas 18º nas emersões;

3. O raio umbral médio mostra-se ligeiramente menor nas imersões que nas emersões;

4. O raio umbral parece decrescer com o aumento do ângulo umbral, exibindo sua curva aproximadamente a mesma declividade, tanto nas imersões como nas emersões;

5. Nota-se uma diferença de aproximadamente 0,002 entre os segmentos de reta ajustados, de tal maneira que, para um mesmo valor do ângulo umbral, os valores do raio umbral obtidos a partir das imersões seriam maiores que aqueles extrapolados a partir das emersões.

6. A declividade média do ajuste parabólico parece ser menor que aquela dos ajustes para as imersões ou emersões, considerados isoladamente.

A fraca confiabilidade estatística, oriunda da grande dispersão dos pontos, é provavelmente a responsável pelos comportamentos descritos nos itens 5 e 6. Por outro lado, as observações 3 e 4 são relevantes, porque, como já explicado anteriormente, o raio da umbra terrestre é menor em ângulos umbrais mais elevados (correspondentes à projeção das regiões mais próximos aos polos terrestres). Por conseguinte, as curvas da Fig. 1 não somente mostram que a Terra é aproximadamente esférica, como também indicam que

Figura 1 - Variação do Raio Umbral com o Ângulo Umbral

ela é levemente achatada. No item seguinte, é determinado o valor mais provável do achatamento da umbra.

Cálculo do Achatamento Umbral. A

análise dos conjuntos individuais de cronometragens forneceu uma estimativa do valor mais provável do achatamento da umbra (Método I). Um outro método é o cálculo direto que o programa de análise de cronometragens realiza. A **Tabela 7** resume os resultados. Os valores máximos e mínimos correspondem aos limites dos intervalos de $\pm 2\sigma$ (= 95% de chance de inclusão).

 Tabela 7 - Valores de Achatamento Umbral (II-Programa)

Achatamento	Mínimo	Médio	Máximo
Imersões	1/254	1/136	1/93
E mer sões	1/186	1/89	1/58
G er al	1/233	1/120	1/81

Um método ainda mais rigoroso para determinar o valor mais provável para o achatamento da umbra é usar as equações das curvas ajustadas, ilustradas no gráfico da Fig. 1, para cálculo dos valores do raio umbral em 0° (correspondente ao Equador) e 90° (correspondente ao polo). Os resultados correspondentes às análises das 3 curvas, adicionados aos dos dois outros métodos usados anteriormente estão resumidos na **Tabela 8**.

O valor 1/115 (método III) foi obtido a partir da curva azul (somente emersões). O valor 1/155 (método VI) foi obtido usando-se a equação da curva

Tabela 8 - Estimativas do Achatamento Umbral			
Método	1/Mín.	1/Médio	1/Máx.
I	240	128	56
П	233	120	81
IΠ	-	115	-
IV	-	146	-
V	-	178	-
VI	-	155	-
Média	-	147	-
Erro		0,24x1/147	7
1σ	194	147	118
2σ	285	147	99
3σ	540	147	85

verde, enquanto o de 1/178 (método V) resultou de um ajuste linear a todos os pontos. No entanto, o método mais preciso parece ser o IV. Ele consistiu em combinar resultados das curvas azul e vermelha. O valor do raio para 90 graus foi obtido da curva das imersões e usado em conjunto com o valor do raio para 0 grau, obtido das emersões. A Tabela 8 informa que o valor mais representativo do achatamento da umbra durante todo o eclipse tem cerca de 68% de chance (assumindo-se uma distribuição Gaussiana) de estar entre 1/194 e 1/118 e 95% de chance de estar entre 1/285 e 1/99, sendo seu valor mais provável igual a 1/147. Nota-se que a descontinuidade, notada nos valores ajustados do raio umbral durante a totalidade, aparentemente reduziu a variação total desse parâmetro durante o eclipse, considerando-se que as fases parciais parecem indicar declividades compatíveis com um valor de achatamento médio em torno de 1/120 (em concordância com o cálculo do programa).

Reprodução dos Instantes dos Contatos. A **Tabela 9** lista as previsões para os contatos, usando-se o modelo de Meeus e fator de ampliação umbral e achatamento iguais a 2,033% (vide Tabela 5) e 1/147, respectivamente.

Observa-se um desvio médio de ± 0.2 minuto entre os instantes calculados e os cronometrados para os contatos. Os maiores desvios foram observados para os seguintes contatos: fim da fase umbral parcial (U4) (observado 1,2 minutos antes) e para as imersões e emersões das seguintes crateras: Copernicus; Aristarchus e Tycho. É provável que o brilho intenso dessas crateras, combinado com suas dimensões mais acentuadas, tenham dificultado a identificação do contato. A cratera Grimaldi, a qual localiza-se próximo ao limbo e também é extensa, também apresentou desvio maior.

DimensõesdaCamadaOpticamente Ativa da Atmosfera.A espessura

Tabela 9 - Reprodução dos Tempos de Contato

		TT (0)		
	Evento	10(0)	10(0)	Δt
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		(h:m:s)	(h:m:s)	1/147
$\begin{array}{c} {\rm Stevinus A^E} & 5:11:06,0 & 5:11:23,7 & +17,7 \\ {\rm C am panus^E} & 4:38:51,3 & 4:38:52,0 & +0,7 \\ {\rm U 4} & 5:17:05,3 & 5:18:15,8 & +70,5 \\ {\rm Birt^E} & 4:45:58,0 & 4:45:53,5 & -4,5 \\ {\rm G oclenius^E} & 5:09:02,0 & 5:08:47,6 & -14,4 \\ {\rm L angrenus^E} & 5:13:20,0 & 5:13:33,2 & +13,2 \\ {\rm Billy^E} & 4:26:42,0 & 4:26:38,4 & -3,6 \\ {\rm C ensorinus^E} & 5:06:14,0 & 5:06:04,9 & -9,1 \\ {\rm Dionysius^E} & 4:54:00,5 & 4:53:56,4 & -4,1 \\ {\rm G rim aldi^E} & 4:18:49,8 & 4:19:10,8 & +21,0 \\ {\rm M. C risium^E} & 5:06:43,7 & 5:06:55,9 & +12,2 \\ {\rm Proclus^E} & 5:02:47,5 & 5:02:28,6 & -18,9 \\ {\rm Plinius^E} & 4:53:22,0 & 4:53:50,0 & -17,0 \\ {\rm C opernicus^E} & 4:32:17,5 & 4:32:44,0 & +26,5 \\ {\rm K epler^E} & 4:24:23,5 & 4:24:54,4 & +30,9 \\ {\rm M anilius^E} & 4:36:0,0 & 4:46:11,2 & +11,2 \\ {\rm M ene laus^E} & 4:39:0,3 & 4:49:01,4 & -4,9 \\ {\rm P yhe as^E} & 4:29:10,5 & 4:29:13,8 & +3,3 \\ {\rm T im ocharis^E} & 4:30:39,0 & 4:30:49,9 & +10,9 \\ {\rm A ristarchus^E} & 4:16:11,0 & 4:17:08,7 & +57,7 \\ {\rm Eud} oxus^E & 4:33:34,6 & 4:33:33,5 & +19,9 \\ {\rm P lato^E} & 4:23:23,0 & 4:23:53,4 & +30,4 \\ {\rm T ycho^I} & 2:18:40,4 & 2:18:57,0 & +16,6 \\ {\rm U 3} & 4:06:22,5 & 4:06:25,3 & +2,8 \\ {\rm C am panus^I} & 2:14:49,0 & 2:14:48,1 & -0,9 \\ {\rm U 1} & 2:03:06,6 & 2:03:00,0 & -6,6 \\ {\rm B irl^I} & 2:03:06,6 & 2:03:00,0 & -6,6 \\ {\rm B irl^I} & 2:03:06,6 & 2:03:00,0 & -6,6 \\ {\rm B irl^I} & 2:03:06,6 & 2:03:00,0 & -6,6 \\ {\rm B irl^I} & 2:03:06,6 & 2:03:00,0 & -6,6 \\ {\rm B irl^I} & 2:03:06,6 & 2:03:00,0 & -6,6 \\ {\rm B irl^I} & 2:03:06,6 & 2:03:00,0 & -6,6 \\ {\rm B irl^I} & 2:03:06,6 & 2:03:00,0 & -6,6 \\ {\rm B irl^I} & 2:03:06,6 & 2:03:00,0 & -6,6 \\ {\rm B irl^I} & 2:03:06,6 & 2:03:00,0 & -6,6 \\ {\rm B irl^I} & 2:03:06,6 & 2:03:00,0 & -6,6 \\ {\rm B irl^I} & 2:03:06,6 & 2:03:00,0 & -6,6 \\ {\rm B irl^I} & 2:03:06,6 & 2:03:00,0 & -6,6 \\ {\rm B irl^I} & 2:03:05,6 & 2:03:00,0 & -6,6 \\ {\rm B irl^I} & 2:03:05,6 & 2:03:00,0 & -6,6 \\ {\rm B irl^I} & 2:03:05,6 & 2:03:00,0 & -14,7 \\ {\rm T aruntus^I}$	Tycho ^E	4:47:58,8	4:48:16,6	+17,8
$ \begin{array}{c} {\rm C \ am \ panus}^{\rm E} & 4:38:51,3 & 4:38:52,0 & +0,7 \\ \hline {\rm U \ 4} & 5:17:05,3 & 5:18:15,8 & +70,5 \\ \hline {\rm Birt}^{\rm E} & 4:45:58,0 & 4:45:53,5 & -4,5 \\ \hline {\rm G \ oclenius}^{\rm E} & 5:09:02,0 & 5:08:47,6 & -14,4 \\ {\rm L \ angrenus}^{\rm E} & 5:13:20,0 & 5:13:33,2 & +13,2 \\ \hline {\rm Billy}^{\rm E} & 4:26:42,0 & 4:26:38,4 & -3,6 \\ \hline {\rm C \ ensorinus}^{\rm E} & 5:02:19,0 & 5:02:06,2 & -12,8 \\ \hline {\rm T \ aruntius}^{\rm E} & 5:06:14,0 & 5:06:04,9 & -9,1 \\ \hline {\rm Di \ ony \ sius}^{\rm E} & 4:54:00,5 & 4:53:56,4 & -4,1 \\ \hline {\rm G \ rim \ aldi}^{\rm E} & 4:18:49,8 & 4:19:10,8 & +21,0 \\ \hline {\rm M.\ C \ risum}^{\rm E} & 5:06:43,7 & 5:06:55,9 & +12,2 \\ \hline {\rm P \ rolus}^{\rm E} & 4:53:22,0 & 4:53:05,0 & -17,0 \\ \hline {\rm C \ opernicus}^{\rm E} & 4:22:17,5 & 4:32:44,0 & +26,5 \\ \hline {\rm K \ epler}^{\rm E} & 4:22:13,5 & 4:24:54,4 & +30,9 \\ \hline {\rm M \ anilius}^{\rm E} & 4:46:00,0 & 4:46:11,2 & +11,2 \\ \hline {\rm M \ enelaus}^{\rm E} & 4:30:39,0 & 4:30:49,9 & +10,9 \\ \hline {\rm A \ ristarchus}^{\rm E} & 4:36:14,0 & 4:36:35,9 & +21,9 \\ \hline {\rm P \ ythe \ as}^{\rm E} & 4:30:39,0 & 4:30:49,9 & +10,9 \\ \hline {\rm A \ ristarchus}^{\rm E} & 4:33:34,6 & 4:33:53,5 & +19,9 \\ \hline {\rm P \ rico}^{\rm E} & 4:23:23,0 & 4:23:53,4 & +30,4 \\ \hline {\rm T \ ycho}^{\rm I} & 2:18:40,4 & 2:18:57,0 & +16,6 \\ \hline {\rm U \ 3} & 4:06:22,5 & 4:06:25,3 & +2.8 \\ \hline {\rm C \ am \ panus}^{\rm I} & 2:14:49,0 & 2:14:48,1 & -0,9 \\ \hline {\rm U \ 1} & 2:03:06,6 & 2:03:00,0 & -6,6 \\ \hline {\rm B \ irl}^{\rm I} & 2:23:17,0 & 2:23:15,9 & -1,1 \\ \hline {\rm G \ oclenius}^{\rm I} & 2:48:48,0 & 2:48:58,0 & +10,0 \\ \hline {\rm L \ angrenus}^{\rm I} & 2:54:407,4 & 2:55:00,7 & +12,7 \\ \hline {\rm D \ lonysius}^{\rm I} & 2:48:48,0 & 2:48:58,0 & +10,0 \\ \hline {\rm L \ angrenus}^{\rm I} & 2:54:47,8 & 2:09:08,5 & +20,7 \\ \hline {\rm R \ intus}^{\rm I} & 2:23:17,9 & 2:14:48 & +40,8 \\ \hline {\rm P \ linius}^{\rm I} & 2:54:47,8 & 2:09:08,5 & +20,7 \\ \hline {\rm R \ iccioli}^{\rm I} & 2:09:00,0 & 2:9:14,3 & +14,3 \\ \hline {\rm M \ crisum}^{\rm I} & 3:01:55,6 & 3:1:55,5 & +3,1 \\ \hline {\rm P \ roclus}^{\rm I} & 2:59:44,3 & 2:29:04,0 & +2,2 \\ \hline {\rm K \ epler}^{\rm I} & 2:59:44,3 & 2:29:04,8 & +40,8 \\ \hline {\rm P \ linius}^{\rm I} & 2:43:45,3 & 2:44:00,0 & +13,2 \\ \hline {\rm $	Stevinus A ^E	5:11:06,0	5:11:23,7	+17,7
	C am panus ^E	4:38:51,3	4:38:52,0	+0,7
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	11.4	5.17.053	5.18.15.8	+70 5
$ \begin{array}{c} 1.12 \\ Goclenius \\ \hline S. 109:02,0 \\ S. 13:33,2 \\ +13,2 \\ \hline Billy \\ \hline H12 \\ \hline H13,2 \\ \hline H1$	BirtE	4.45.58.0	4.45.53.5	-4.5
	Goslenius ^E	5.00.02.0	5.08.47.6	111
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	I on gronus ^E	5.12.20.0	5.12.22.2	± 12.2
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		4.26.42.0	A.26.20 A	26
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Billy-	4.20.42,0	4.20.36,4	-2,0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Censorinus-	5:02:19,0	5:02:00,2	-12,0
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	larunuus ²	5:06:14,0	5:06:04,9	-9,1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Dionysius	4:54:00,5	4:53:56,4	-4,1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Grimaldi ^E	4:18:49,8	4:19:10,8	+21,0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	M. Crisium E	5:06:43,7	5:06:55,9	+12,2
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Proclus ^E	5:02:47,5	5:02:28,6	-18,9
$\begin{array}{c} C \ opernicus^{\mathbf{E}} & 4:32:17,5 & 4:32:44,0 & +26,5 \\ K \ epler^{\mathbf{E}} & 4:24:23,5 & 4:24:54,4 & +30,9 \\ M \ anilius^{\mathbf{E}} & 4:49:06,3 & 4:49:01,4 & -4,9 \\ F \ ytheas^{\mathbf{E}} & 4:29:10,5 & 4:29:13,8 & +3,3 \\ T \ im \ ocharis^{\mathbf{E}} & 4:30:39,0 & 4:30:49,9 & +10,9 \\ Aristarchus^{\mathbf{E}} & 4:16:11,0 & 4:17:08,7 & +57,7 \\ E \ ud \ ox us^{\mathbf{E}} & 4:36:14,0 & 4:36:35,9 & +21,9 \\ P \ rico^{\mathbf{E}} & 4:25:48,5 & 4:25:51,6 & +3,1 \\ Aristoteles^{\mathbf{E}} & 4:23:23,0 & 4:23:53,4 & +30,4 \\ T \ ycho^{\mathbf{I}} & 2:18:40,4 & 2:18:57,0 & +16,6 \\ U \ U \ dx & 4:06:22,5 & 4:06:25,3 & +2,8 \\ C \ am \ panus^{\mathbf{I}} & 2:14:49,0 & 2:14:48,1 & -0,9 \\ U \ 1 & 2:03:06,6 & 2:03:00,0 & -6,6 \\ B \ irt^{\mathbf{I}} & 2:23:17,0 & 2:23:15,9 & -1,1 \\ G \ oclenius^{\mathbf{I}} & 2:48:48,0 & 2:48:58,0 & +10,0 \\ L \ angrenus^{\mathbf{I}} & 2:54:07,4 & 2:55:00,7 & +12,7 \\ D \ ion \ ysius^{\mathbf{I}} & 2:48:14,0 & 2:47:59,3 & -14,7 \\ T \ aruntius^{\mathbf{I}} & 2:54:48,0 & 2:55:00,7 & +12,7 \\ D \ ion \ ysius^{\mathbf{I}} & 2:09:00,0 & 2:9:14,3 & +14,3 \\ M \ . \ Crisium^{\mathbf{I}} & 3:01:54,6 & 3:1:51,5 & +3,1 \\ Proclus^{\mathbf{I}} & 2:9:00,0 & 2:9:14,3 & +14,3 \\ M \ . \ Crisium^{\mathbf{I}} & 3:01:54,6 & 3:1:51,5 & +3,1 \\ Proclus^{\mathbf{I}} & 2:23:17,3 & 2:23:22,1 & +9,8 \\ M \ anilius^{\mathbf{I}} & 2:23:0,0,0 & 2:29:44,8 & +40,8 \\ P \ linius^{\mathbf{I}} & 2:29:04,0 & 2:29:44,8 & +40,8 \\ P \ linius^{\mathbf{I}} & 2:29:04,0 & 2:29:44,8 & +40,8 \\ P \ linius^{\mathbf{I}} & 2:34:54,3 & 2:35:04,3 & +10,0 \\ T \ im \ ocharis^{\mathbf{I}} & 2:40:54,3 & 2:41:15,3 & +21,0 \\ Aristarchus^{\mathbf{I}} & 2:39:24,3 & 2:59:44,3 & +28,0 \\ E \ ud \ ox \ us^{\mathbf{I}} & 2:59:44,3 & 2:59:47,5 & +3,2 \\ P \ ic \ o^{\mathbf{I}} & 2:59:24,3 & 2:59:47,5 & +3,2 \\ P \ ic \ o^{\mathbf{I}} & 2:59:24,3 & 2:59:47,5 & +3,2 \\ P \ ic \ o^{\mathbf{I}} & 2:59:24,3 & 2:59:47,5 & +3,2 \\ P \ ic \ o^{\mathbf{I}} & 2:59:24,4 & 2:59:47,5 & +3,2 \\ P \ ic \ o^{\mathbf{I}} & 2:59:24,4 & 2:59:44,3 & 2:59:47,5 & +3,2 \\ P \ ic \ o^{\mathbf{I}} & 2:59:25,9 & 2:56:33,9 & +8,0 \\ U \ U \ 2 & 3:14:26,1 & 3:14:38,0 & +11,9 \\ \end{array}$	P linius ^E	4:53:22,0	4:53:05,0	-17,0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	C opernicus ^E	4:32:17,5	4:32:44,0	+26,5
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	K epler ^E	4:24:23,5	4:24:54,4	+30,9
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	M anilius ^E	4:46:00,0	4:46:11,2	+11,2
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Menelaus ^E	4:49:06.3	4:49:01.4	-4.9
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	P vthe as ^E	4:29:10.5	4:29:13.8	+3.3
Aristarchus $4:16:11,0$ $4:17:08,7$ $+57,7$ Eudoxus $4:36:14,0$ $4:36:35,9$ $+21,9$ Pico E $4:25:48,5$ $4:25:51,6$ $+3,1$ Aristoteles $4:33:34,6$ $4:33:53,5$ $+19,9$ Plato E $4:23:23,0$ $4:23:53,4$ $+30,4$ Tycho $2:18:40,4$ $2:18:57,0$ $+16,6$ U3 $4:06:22,5$ $4:06:25,3$ $+2,8$ Campanus $2:14:49,0$ $2:14:48,1$ $-0,9$ U1 $2:03:06,6$ $2:03:00,0$ $-6,6$ Birt $2:23:17,0$ $2:23:15,9$ $-1,1$ Goclenius $2:54:07,4$ $2:53:51,6$ $-15,8$ Billy $2:10:15,0$ $2:10:24,3$ $-9,3$ Censorinus $2:54:07,4$ $2:55:00.7$ $+12,7$ Dionysius $2:54:48,0$ $2:55:00.7$ $+12,7$ Dionysius $2:53:44,8,0$ $2:55:00.7$ $+12,7$ Dionysius $2:53:47,8$ $2:09:08,5$ $+20,7$ Riccioli $2:09:00,0$ $2:9:14,3$ $+14,3$ M. Crisium $3:01:54,6$ $3:1:51,5$ $+3,1$ Proclus $2:29:04,0$ $2:29:44,8$ $+40,8$ Plinius $2:50:16,8$ $2:50:19,0$ $+2,2$ Kepler $2:22:12,3$ $2:22:22,1$ $+9,8$ M anitius $2:47:23,0$ $2:47:36,5$ $+13,5$ Pytheas $2:34:54,3$ $2:35:04,3$ $+10,0$ Tim ocharis $2:28:05,3$ $2:28:34,3$ $+29,0$ Eudoxus $2:29:44,3$ $2:59:47,5$ $+3,2$ <	Tim ocharis ^E	4.30.39.0	4.30.49.9	+10.9
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Aristarchus ^E	4.16.110	4.17.08.7	+ 57 7
Picola4:30:14,04:30:35,5121,5Picola4:25:48,54:25:51,6+3,1Aristoteles4:33:34,64:33:53,5+19,9Plato4:23:23,04:23:53,4+30,4TychoI2:18:40,42:18:57,0+16,6U34:06:22,54:06:25,3+2,8CampanusI2:14:49,02:14:48,1-0,9U12:03:06,62:03:00,0-6,6BirtI2:23:17,02:23:15,9-1,1GocleniusI2:48:48,02:48:58,0+10,0LangrenusI2:54:07,42:53:51,6-15,8BillyI2:10:15,02:10:24,3-9,3CensorinusI2:48:14,02:47:59,3-14,7TaruntiusI2:54:48,02:55:00.7+12,7DionysiusI2:43:00,72:42:48,6-12,1Grim aldiI2:09:00,02:9:14,3+14,3M. CrisiumI3:01:54,63:1:51,5+3,1ProclusI2:58:49,32:58:45,8-3,5CopernicusI2:29:04,02:29:44,8+40,8PliniusI2:50:16,82:50:19,0+2,2KeplerI2:22:12,32:22:22,1+9,8ManitiusI2:43:46,82:44:00,0+13,2MenelausI2:47:23,02:47:36,5+13,5PytheasI2:34:54,32:35:04,3+10,0Tim ocharisI2:40:54,32:35:04,3+10,0Tim ocharisI2:40:54,32:41:15,3+21,0AristarchusI2:28:05,32:28:34,3+2	FudorueE	4.10.11,0	4.17.00,7	+21 0
Pito4.25.48,54.25.51,6+3,1Aristoteles4.33:34,64.33:53,5+19,9Plato4.23:23,04.23:53,4+30,4TychoI2:18:40,42:18:57,0+16,6U34:06:22,54:06:25,3+2,8CampanusI2:14:49,02:14:48,1-0,9U12:03:06,62:03:00,0-6,6BirtI2:23:17,02:23:15,9-1,1GocleniusI2:48:48,02:48:58,0+10,0LangrenusI2:54:07,42:53:51,6-15,8BillyI2:10:15,02:10:24,3-9,3CensorinusI2:48:14,02:47:59,3-14,7TaruntiusI2:54:48,02:55:00.7+12,7DionysiusI2:43:00,72:42:48,6-12,1Grim aldiI2:09:00,02:9:14,3+14,3M. CrisiumI3:01:54,63:1:51,5+3,1ProclusI2:29:04,02:29:44,8+40,8PliniusI2:50:16,82:50:19,0+2,2KeplerI2:22:12,32:22:22,1+9,8ManiliusI2:43:46,82:44:00,0+13,2MenelausI2:47:23,02:47:36,5+13,5PytheasI2:34:54,32:35:04,3+10,0Tim ocharisI2:40:54,32:59:47,5+3,2PicoI2:28:05,32:28:34,3+29,0EudoxusI2:29:20,22:53:34,8+12,8AristotelesI3:02:31,53:02:28,6-2,9LaplaceI2:49:02,52:49:12,6+10,1 <td>DiecE</td> <td>4.30.14,0</td> <td>4.00.00,9</td> <td>+21,7</td>	DiecE	4.30.14,0	4.00.00,9	+21,7
Aristoteles4:33:34,64:33:33,5+19,9P1ato E 4:23:23,04:23:53,4+30,4TychoI2:18:40,42:18:57,0+16,6U34:06:22,54:06:25,3+2,8CampanusI2:14:49,02:14:48,1-0,9U12:03:06,62:03:00,0-6,6BirtI2:23:17,02:23:15,9-1,1GocleniusI2:48:48,02:48:58,0+10,0LangrenusI2:54:07,42:53:51,6-15,8BillyI2:10:15,02:10:24,3-9,3CensorinusI2:48:14,02:47:59,3-14,7TaruntiusI2:54:48,02:55:00.7+12,7DionysiusI2:43:00,72:42:48,6-12,1Grim aldiI2:09:00,02:9:14,3+14,3M. CrisiumI3:01:54,63:1:51,5+3,1ProclusI2:58:49,32:58:45,8-3,5CopernicusI2:29:04,02:29:44,8+40,8PliniusI2:50:16,82:50:19,0+2,2KeplerI2:22:12,32:22:22,1+9,8ManiliusI2:43:46,82:44:00,0+13,2MenelausI2:47:23,02:47:36,5+13,5PytheasI2:34:54,32:35:04,3+10,0Tim ocharisI2:20:05,32:28:34,3+29,0EudoxusI2:29:24,32:59:47,5+3,2PicoI2:23:22,02:53:34,8+12,8AristotelesI3:02:31,53:02:28,6-2,9LaplaceI2:49:02,52:49:12,6 <td></td> <td>4.22.246,5</td> <td>4.22.52.5</td> <td>+ 3,1</td>		4.22.246,5	4.22.52.5	+ 3,1
Plato ² 4:23:23,04:23:33,4+30,4Tycho ^I 2:18:40,42:18:57,0+16,6U34:06:22,54:06:25,3+2,8Campanus ^I 2:14:49,02:14:48,1-0,9U12:03:06,62:03:00,0-6,6Birt ^I 2:23:17,02:23:15,9-1,1Goclenius ^I 2:48:48,02:48:58,0+10,0Langrenus ^I 2:54:07,42:53:51,6-15,8Billy ^I 2:10:15,02:10:24,3-9,3Censorinus ^I 2:48:14,02:47:59,3-14,7Taruntius ^I 2:54:48,02:55:00.7+12,7Dionysius ^I 2:43:00,72:42:48,6-12,1Grim aldi ^I 2:09:00,02:9:14,3+14,3M. Crisium ^I 3:01:54,63:1:51,5+3,1Proclus ^I 2:50:16,82:50:19,0+2,2Kepler ^I 2:22:12,32:22:22,1+9,8Manilius ^I 2:43:46,82:44:00,0+13,2Menelaus ^I 2:47:23,02:47:36,5+13,5Pytheas ^I 2:34:54,32:35:04,3+10,0Tim ocharis ^I 2:40:5,32:28:34,3+29,0Eudoxus ^I 2:59:44,32:59:47,5+3,2Pico ^I 2:53:22,02:53:34,8+12,8Aristoteles ^I 3:02:31,53:02:28,6-2,9Laplace ^I 2:49:02,52:49:12,6+10,1Plato ^I 2:56:25,92:56:33,9+8,0U23:14:26,13:14:38,0+11,9	Afistoteles-	4:33:34,0	4:33:33,3	+ 19,9
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Plato ²⁴	4:23:23,0	4:23:53,4	+30,4
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	l ycho ¹	2:18:40,4	2:18:57,0	+10,0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	U 3	4:06:22,5	4:06:25,3	+2,8
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Cam panus ¹	2:14:49,0	2:14:48,1	-0,9
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	U 1	2:03:06,6	2:03:00,0	-6,6
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	B irt ^I	2:23:17,0	2:23:15,9	-1,1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	G oclenius ^I	2:48:48,0	2:48:58,0	+10,0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Langrenus ^I	2:54:07,4	2:53:51,6	-15,8
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	B illy ^I	2:10:15,0	2:10:24,3	-9,3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Censorinus ^I	2:48:14,0	2:47:59,3	-14,7
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	T aruntius ^I	2:54:48,0	2:55:00.7	+12.7
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Dionvsius ^I	2:43:00.7	2:42:48.6	-12.1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Grim aldi ^I	2:08:47.8	2:09:08.5	+20.7
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Riccioli ^I	2.09.00.0	2.9.14.3	+14 3
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	M Crisium I	3.01.54.6	3 - 1 - 51 - 5	+3.1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ProclusI	2.52.49.3	2.58.45.8	-3.5
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Constnicuel	2.20.42,0	2.20.42,0	+ 10 8
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	DiningI	2.22.04,0	2.27.44,0	+2 2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	V oplarI	2.00.10,8	2.20.19,0	<u> + 2,2</u> ⊥0 ◊
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Man itinal	2:22:12,3	2:22:22,1	+9,0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Wanilius-	2:43:40,8	2:44:00,0	+13,2
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	IVI enelaus ¹	2:47:23,0	2:47:36,5	+13,5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Pytheas ¹	2:34:54,3	2:35:04,3	+10,0
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Tim ocharis ¹	2:40:54,3	2:41:15,3	+21,0
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Aristarchus	2:28:05,3	2:28:34,3	+29,0
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Eudoxus ¹	2:59:44,3	2:59:47,5	+3,2
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Pico ^I	2:53:22,0	2:53:34,8	+12,8
Laplace ^I 2:49:02,5 2:49:12,6 +10,1 Plato ^I 2:56:25,9 2:56:33,9 +8,0 U2 3:14:26,1 3:14:38,0 +11,9	Aristoteles ^I	3:02:31,5	3:02:28,6	-2,9
Plato ^I 2:56:25,9 2:56:33,9 +8,0 U2 3:14:26,1 3:14:38,0 +11,9	Laplace ^I	2:49:02,5	2:49:12,6	+10,1
U2 3:14:26,1 3:14:38,0 +11,9	Plato ^I	2:56:25,9	2:56:33,9	+8,0
	U 2	3:14:26,1	3:14:38.0	+11,9

opticamente ativa da atmosfera terrestre, responsável pela ampliação da umbra pode ser facilmente calculada, a partir do valor de achatamento umbral mais provável, obtido das cronometragens e igual a 1/147. Contudo, em virtude da distorção que a umbra sofre ao se projetar sobre a superfície lunar, esse valor não corresponderá ao da atmosfera terrestre. Ele precisará ser corrigido usando-se o fator da Eq. 5, tal que:

Usando-se o programa para análise de cronometragens, obtém-se o novo valor da ampliação da paralaxe lunar para esse valor de achatamento: $(1,434\pm0,013)$ %, em consistência com os valores da Tabela 5. Logo, a espessura H_{Eq} da camada no Equador será dada por:

 $H_{Eq} = \alpha_{\pi} \ge R_{eq} = 0,01434 \ge 6378 \text{ km} = 91,5 \pm 0,8 \text{ km}$ Eq.7

Enquanto que a espessura nos polos será dada por:

 $H_p = 91,5 - (6378+92)/198 = 58,8 \pm 3,7 \text{ km}$ Eq.8

Com relação à parte sólida da Terra, sabe-se que a diferença entre o raio equatorial e o polar é de 21,4 km. Ao compará-la com o da atmosfera, igual a 32,7 km, conclui-se que a última apresenta um diferencial em altitude que excede em cerca de 11 km o do geóide.

IV - CONCLUSÕES

Como parte de uma campanha observacional, 214 cronometragens de contatos de limbo e crateras realizadas por observadores brasileiros foram analisadas para determinação das dimensões da umbra terrestre durante o eclipse lunar total de 8-9 de 2003.

Foram determinados os fatores de ampliação da umbra e da paralaxe lunar usando-se diferentes valores de achatamento e segundo vários modelos de representação da umbra. O valor médio para o fator de ampliação da umbra pela atmosfera terrestre foi de 1,82 \pm 0,02%, enquanto o achatamento médio da umbra situou-se entre 1/118 e 1/194, sendo 1/147 o valor mais provável (cerca do dobro do da Terra). Daí concluise que o achatamento da camada da atmosfera terrestre capaz de contribuir para a sombra do planeta é igual a 1/198, sendo cerca de 50% maior que o da superfície da Terra. Conclui-se também que a espessura da camada atmosférica opticamente ativa da Terra é igual a 91,5 \pm 0,1 km no Equador, reduzindo-se para 58,8 \pm 3,7 km nos polos.

As análises também mostram a clara dependência do raio da umbra em relação ao ângulo

umbral, uma conseqüência direta da forma achatada da Terra. Como exemplo, a adoção do achatamento igual a 1/147 para representação da umbra exigiria a adoção de um fator de ampliação umbral igual a 2,03% para melhor reproduzir os tempos dos contatos.

Finalmente, ressalta-se a necessidade de padronização desse tipo de análise, tendo em vista que a freqüente adoção do valor 1/298 para o achatamento da umbra é claramente inadequada, podendo acarretar reduções nos fatores de ampliação com o aumento do ângulo umbral.

V - REFERÊNCIAS

[1] Karkoschka, E. Earth's Swollen Shadow. Sky and Telescope, v. 92, no 3, pp. 98-100, Sep. 1996

[2] Vital, H. C.; Projeto de Observação Eletrônico do Eclipse Lunar Total de 15-16 de Maio de 2003, http://www.geocities.com/lunissolar2003.

[3] Vital, H. C., A Luminosidade do Eclipse Lunar Total de 15-16 de Maio de 2003. Publicação Anual (Reporte) da REA XI, Dez. 2003.

[4] Lista Eletrônica da REA: reanet@yahoogrupos.com.br

[5] Vital, H. C., **Previsões para os Próximos Eclipses Lunares Observáveis no Brasil. Publicação Anual (Reporte) da REA N°5**, pp. 18-20, Dez. 1992.

[6] Vital, H. C., Eclipse Lunar Total de 09-10/12/1992. Publicação Anual (Reporte) da REA Ano VI, pp. 16-17, Dez. 1993.

[7] Meeus, J.; Astronomical Formulae for Calculators, Willmann-Bell, Inc., 2nd Ed., 1982.

[8] Espenak, F.; NASA/GSFC ; Páginas Eletrônicas da NASA sobre Eclipses Solares e Lunares em: http://sunearth.gsfc.nasa.gov/eclipse/eclipse.html

[9] Espenak, F.; Fifty Year Canon of Lunar Eclipses: 1986-2035, NASA, no 1216, 1989.

[10] Link, F.; Eclipse Phenomena in Astronomy. New York: Springer-Verlag, 1996.

[11] Meeus, J., Astronomical Tables of the Sun, Moon and Planets, Willmann-Bell, Inc., 1983.

[12] Soulsby, B., **Improved Lunar Eclipse Ephemerides**, Journal of the British Astronomical Association v. 100, no 6, pp. 293-305, 1990.