ASPECTOS GERAIS SOBRE A OBSERVAÇÃO DE VARIÁVEIS

Antonio Padilla Filho (REA/RJ)

ABSTRACT

This article describes the general procedures and techniques used for variable star observation. Recomendations on identification, magnitude estimates, and equipment, as well as observing tips, are provided in the text.

ASPECTOS GERAIS SOBRE A OBSERVAÇÃO DE VARIÁVEIS.

A observação de estrelas variáveis é uma atividade em que o aficcionado pode realmente contribuir para o desenvolvimento da astronomia, mesmo com a utilização de modestos instrumentos. Uma pequena luneta aliada a uma boa familiarização com o céu noturno, sendo capaz de localizar campos estelares a partir de uma carta de busca, são indispensáveis para consecução de um trabalho proveitoso. Um binóculo - digamos um 8x30 - é de grande utilidade para a localização da área procurada no céu, já que a busca de variáveis - principalmente quando estão com baixo brilho - e feita por etapas: vista desarmada, binóculo e telescópio. As cartas para localização podem ser obtidas através de solicitação às associações astronômicas ou mesmo se recorrendo a outros observadores. O ideal é conseguir uma recorrendo a outros observadores. O ideal é conseguir uma cópia do "Variable Star Atlas" da AAVSO - The American Association of Variable Stars Observers - (Associação Americana de Observadores de Estrelas Variáveis), onde estão assinaladas centenas de variáveis com as respectivas sequências de estrelas de comparação.

A estimativa de brilho é o trabalho fundamental do variabilista. Embora existam fotômetros muito precisos a disposição de amadores privilegiados, a fotometria visual ainda é a prática comum entre a maioria. Além de ser um método mais rápido de trabalho, permitindo monitorar quantidade maior de estrelas por noite, ela atinge a precisão requerida por observadores mais exigentes. Com precisão requerida por observadores mais exigentes. com prática se chega ao décimo de magnitude de precisão.

A estimativa visual se baseia na comparação de grandezas de brilho e para isso são necessárias estrelas de comparação. Deve-se selecionar entre as estrelas de comparação presentes na carta de busca aquelas cujos brilhos "cerquem" o da variável observada. Conhecendo-se suas magnitudes, infere-se o brilho da variável por simples comparação. Este é o método tradicional empregado por observadores consagrados em todo o mundo.

Através do recolhimento das estimativas realizadas por muitos observadores é possível se obter uma curva de luz para uma estrela variável. Ela é a representação gráfica da oscilação do brilho de uma estrela num determinado período. A contribuição de vários observadores é necessária a fim de ser obtida uma curva de luz média, já que toda observação individual é passivel de erro. Com a finalidade de diminuir a margem de erro nas estimativas visuais, sempre são recomendados certos procedimentos e conselhos úteis, recolhidos dos mais experientes nessa atividade, apresentados a seguir.

PROCEDIMENTOS REGULARES PARA A OBSERVAÇÃO DE ESTRELAS VARIÁVEIS.

- 1. Confirme e reconfirme a identificação da variável e estrelas de comparação. A maior causa de grandes erros de estimativas visuais é decorrente da identificação equivocada da variável. É um erro passivel de ocorrer até com observadores experientes, principalmente quando a variável está com baixo brilho, confundindo-se com estrelas adjacentes. O uso de cartas de busca individuais precisas é recomendado, principalmente em áreas austrais mal mapeadas.
- 2. Use somente a sequência de estrelas de comparação provida por sua associação. Cartas de busca de autores diversos apresentam diferença em relação à magnitude de estrelas de comparação. Para uniformizar as estimativas, use o mesmo mapa que seus colegas de associação. Em toda estimativa devem estar assinaladas as magnitudes das estrelas usadas para comparação.

- 3. Em condições ideais, as estrelas de comparação não devem diferir mais de 0.5 magnitude entre si, devem estar no mesmo campo visual da variável, sendo todas da mesma cor (o que é praticamente impossível).
- 4. Observe a estrela sem pre-concepções. Registre exatamente o que seus olhos vêem, evitando corrigir sua estimativa diante de um comportamento da variável que voce julgue ser anormal. Correções desse tipo levam a erros sistemáticos que são mais difíceis de serem reconhecidos que os erros aleatórios de estimativa.
- 5. Mantenha as estrelas comparadas centradas no campo visual. Alguns instrumentos levam estrelas situadas próximas da borda do campo visual a serem menos brilhantes (vignetting), por isso é recomendável manter sempre as estrelas comparadas equidistantes do centro do campo. Caso diferente é a impressão que se tem de considerar um pouco mais brilhante a estrela ao se deslocá-la para a borda do campo, em função do contraste com a negritude da parede interna da ocular.
- 6. Mantenha seus olhos em movimento. Procure não se fixar em nenhuma estrela, mantendo seus olhos em movimento, checando e reconhecendo suas impressões.
- 7. Mantenha desfocalizado o instrumento. É mais fácil comparar discos de luz do que fontes pontuais. Essa recomendação deve ser seguida à risca quando se compara estrelas de cores diferentes, atenuando assim o forte impacto das cores vermelhas sobre a retina.
- 8. Escolha variáveis adequadas ao seu instrumento. Estrelas fracas tendem a parecer iguais em brilho, quando se está próximo do limite de magnitude do instrumento. A precisão da estimativa torna-se crítica à partir de 1 magnitude antes do limite do instrumento. Variáveis até 7ª ou 8ª magnitude podem ser observadas com binóculos (também desfocalizadas levemente). A estimativa a olho nú é sempre passivel de erro, principalmente quando se trata de estrelas vermelhas. A olho nú parecerão mais brilhantes que uma estrela azul ou branca da mesma magnitude.
- 9. Quando observar estrelas fracas mantenha os dois olhos abertos, tampando com a mão aquele que não estiver em uso. Voce ganhará alguns décimos de magnitude, importantes neste limite. Utilize também o recurso da visão indireta (averted vision) que consiste em se observar com o "canto da vista", olhando-se para um ponto próximo da estrela procurada. A nossa retina é composta de dois tipos de células sensíveis a luz: bastonetes e cones. Existe maior proporção de células bastonete na periferia da retina, e estas são mais sensíveis à luz que as células cone. Sendo assim, o uso desta área da retina permite captar estrelas mais tênues.

10.Precavenha-se ao observar estrelas vermelhas. A nossa retina, devido a fatores inerentes à própria fisiologia, tem mais facilidade de fixar cores vermelhas, o que ocasiona uma superestimação do brilho de variáveis desta cor. A desfocalização do instrumento ou a movimentação constante dos olhos durante a estimativa são fatores atenuantes para este efeito, denominado Purkinje.

SOBRE O AUTOR:

Antonio Padilla Filho, 31, é jornalista profissional e astrônomo amador desde 1972. Suas áreas principais de interesse astronômico são estrelas variáveis, (onde colabora com a American Association of Variable Stars Observers - AAVSO) e ocultação de estrelas pela lua (onde envia regularmente resultados para o ILOC). Padilla é especialmente ativo nas observações de variáveis eruptivas, e suas estimativas tem sido publicadas com frequência nas Circulares Brasileiras de Astronomia. Além da REA, Padilla é filiado também a LIADA - Liga Ibero Americana de Astronomia, para onde remete também suas estimativas de variáveis.